ΤΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΔΩ
Τα Τρία Άλυτα
Προβλήματα της Αρχαιότητας
1. Το Δήλιο πρόβλημα
2. Η Τριχοτόμηση γωνίας
3. Ο Τετραγωνισμός του κύκλου
1.
Το Δήλιο πρόβλημα
Το Δήλιο πρόβλημα ή ο διπλασιασμός του
κύβου απασχόλησε τους αρχαίους Έλληνες γεωμέτρες και η αναζήτηση λύσεων,
οδήγησε σε μια έντονη ανάπτυξη της Γεωμετρίας.
Το
Δήλιο πρόβλημα απόκτησε δημοσιότητα όταν το ανέφερε, σε μια τραγωδία o
βασιλιάς της Κρήτης Μίνως διαμαρτυρόμενος γιατί το κενοτάφιο, που προοριζόταν
για το γιο του Γλαύκο, ήταν πολύ μικρό για βασιλικό μνημείο και απαιτούσε το
διπλασιασμό του όγκου του χωρίς να αλλάξει το κυβικό του σχήμα. Πανελλήνια
γνωστό όμως έγινε το πρόβλημα αυτό όταν αναφέρθηκε από το μαντείο του Δήλιου
Απόλλωνα, όταν δηλαδή ρωτήθηκε το μαντείο, τι πρέπει να κάνουν για να
απαλλαγούν από το λοιμό που μάστιζε το νησί Δήλο, απάντησε ότι τούτο θα συμβεί
αν διπλασιάσουν τον κυβικό βωμό του Απόλλωνα. Έτσι το πρόβλημα του διπλασιασμού
του κύβου πέρασε στην ιστορία με το όνομα "Δήλιο πρόβλημα".
Οι
λύσεις που δόθηκαν στο πρόβλημα, κατά την ελληνική αρχαιότητα, σώθηκαν και
φθάσανε σε μάς από τον σχολιαστή των έργων του Αρχιμήδη Ευτόκιο (6 αι. μ.χ).
Αυτός σχολιάζοντας ανάλογο πρόβλημα του Αρχιμήδη και τη μέθοδο που αυτός
χρησιμοποίησε για να το λύσει, δίνει όλες τις λύσεις παρεμβολής που του ήταν
τότε γνωστές από παλαιότερες συγγραφές. Οι λύσεις που δίνει είναι 12 και η
αρχαιότερη είναι του Αρχύτα.
Οι κυριότερες από τις γνωστές λύσεις
προέρχονται από τους :
Ο
Ιπποκράτης ο Χίος (470-400 π.χ)
Ο Μέναιχμος (375- π.χ)
Ο
Αρχύτας ο Ταραντίνος (428-365 π.χ)
Ο Αρχιμήδης (287-212 π.χ)
Ο
Πλάτων (427-347 π.χ) Ο
Ερατοσθένης (276-194 π.χ)
Ο Πάππος ο Αλεξανδρινός (3ος αι. μ.χ) Ο Διοκλής (1ος αι. π.χ)
Ο
Ήρων ο Αλεξανδρινός (1ος -2ος αι. μ.χ)
Ο Απολλώνιος (265-170 π.χ)
Ο
Νικομήδης (έζησε γύρω στο 200 π.χ)
2.
Η Τριχοτόμηση γωνίας
Σήμερα δεν γνωρίζουμε κάτω από ποιες
συνθήκες τέθηκε το πρόβλημα της τριχοτόμησης γωνίας στην ελληνική αρχαιότητα.
Ξέρουμε όμως ότι αποτελούσε το ένα από τα τρία μεγάλα προβλήματα μετά το Δήλιο
και τον τετραγωνισμό του κύκλου. Ουσιαστικά το πρόβλημα έγκειται στην τριχοτόμηση
οξείας γωνίας, διότι αν είναι αμβλεία αφαιρούμε από αυτήν την ορθή που μπορεί
να τριχοτομηθεί με χάρακα και διαβήτη. Η τριχοτόμηση όμως μιάς οξείας γωνίας
είναι αδύνατο να πραγματοποιηθεί μόνο με χάρακα και διαβήτη γιατί η εξίσωση που
την εκφράζει είναι τρίτου βαθμού χωρίς να μπορεί να αναχθεί σε δευτέρου.
Πράγματι από τη τριγωνομετρία μας είναι γνωστή η διπλανή σχέση, στην οποία αν
θέσουμε εφ3θ = α και εφθ = x
και κάνουμε τις πράξεις θα φθάσουμε στη x3
- 3.α.x2 - 3.x + α = 0 που είναι η
εξίσωση της τριχοτόμησης. Η κατασκευή με χάρακα και διαβήτη των ριζών αυτής της
εξίσωσης είναι δυνατή μόνο αν μπορεί αυτή να αναλυθεί σε δύο παράγοντες, ένα
πρωτοβάθμιο και ένα δευτεροβάθμιο, όμως αυτό αποδείχθηκε μόλις το 1837, ότι
είναι αδύνατο.
Οι
αρχαίοι Έλληνες γεωμέτρες όταν οι προσπάθειές τους με το χάρακα και το διαβήτη
δεν απέδωσαν, στράφηκαν σε άλλες καμπύλες εκτός του κύκλου και σε άλλες
μεθόδους. Το πρώτο αποτέλεσμα αυτής της προσπάθειας ήταν η επινόηση από τον
Ιππία τον Ηλείο της πρώτης καμπύλης στην ελληνική Γεωμετρία, μετά την
περιφέρεια, της τετραγωνίζουσας, με τη βοήθεια της οποίας έδωσε και τη πρώτη
λύση του προβλήματος.
Οι
γνωστότεροι αρχαίοι γεωμέτρες που ασχοληθήκανε με το πρόβλημα της τριχοτόμησης
της γωνίας είναι :
Ο Ιππίας ο Ηλείος (περίπου 430 π.χ) Ο Νικομήδης (περίπου 200 π.χ)
Ο
Αρχιμήδης (287-212 π.χ)
Ο Πάππος ο Αλεξανδρινός (3ος αι. μ.χ)
3.
Ο Τετραγωνισμός του κύκλου
Η μέτρηση του εμβαδού του
περικλειομένου από κάποιο σχήμα, ήταν σε όλους τους λαούς, από την εποχή που
ακόμη η γεωμετρία ήταν εμπειρικής μορφής, βασική επιδίωξη όλων των γεωμετρών.
Από τη στιγμή που διαλέξανε σαν μονάδα μέτρησης των εμβαδών, το τετράγωνο με
πλευρά τη μονάδα μήκους, αυτόματα τέθηκε και το πρόβλημα του τετραγωνισμού των
διαφόρων σχημάτων.
Αρχικά
"τετραγωνίστηκαν" δηλαδή προσδιορίστηκε το εμβαδόν τους, τα
ορθογώνια, τα τρίγωνα, τα παραλληλόγραμμα και ορισμένα πολύγωνα. Μετά από αυτό
ήταν φυσικό να επιδιωχθεί και ο τετραγωνισμός σχημάτων περικλειομένων από
καμπύλες γραμμές και πρώτου από όλα του κύκλου. Ο τετραγωνισμός του κύκλου, το
τρίτο από τα μεγάλα προβλήματα της αρχαιότητας, απασχόλησε πολλούς ερευνητές
για πολλούς αιώνες και υπήρξε το μεγάλο εμπόδιο πάνω στο οποίο σκόνταψαν μεγάλα
ονόματα.
Η
απαίτηση του προβλήματος είναι να κατασκευαστεί τετράγωνο ισοδύναμο με δοσμένο
κύκλο, αν δηλαδή είναι R η ακτίνα του κύκλου
και x η ζητούμενη πλευρά του τετραγώνου, πρέπει να αληθεύει η
σχέση x2 = π.R2 ή ,
όπου π ο λόγος του μήκους της περιφέρειας προς το μήκος της διαμέτρου του
κύκλου. Παρόλο που εμπειρικά είχε διαπιστωθεί ότι ο λόγος π της περιφέρειας
προς τη διάμετρο διατηρείται σταθερός, ωστόσο η κατασκευή αυτού του λόγου και
όταν ακόμη η Γεωμετρία εφοδιασμένη με την απόδειξη είχε γίνει επιστήμη, στάθηκε
αδύνατη. Υπήρξαν κατασκευές του π μεγαλοφυείς κατά τη σύλληψη όχι όμως
πραγματοποιημένες σύμφωνα με την απαίτηση του "χάρακα και του
διαβήτη" που έθεταν τότε. Παράλληλα έγιναν μεγαλειώδεις προσπάθειες
υπολογισμού της τιμής του π, οι οποίες με πρωτεργάτη τον Αρχιμήδη, έδωσαν
ένδοξα αποτελέσματα.
Ο
πρώτος που ασχολήθηκε με τον τετραγωνισμό του κύκλου είναι ο Αναξαγόρας ο
Κλαζομένιος (500-428 π.χ) δάσκαλος και φίλος του Περικλή. Στη συνέχεια
ασχολήθηκαν οι Ιπποκράτης ο Χίος (470- 400 π.χ) ο σοφιστής Αντιφών ο Αθηναίος
(περί το 430 π.χ) ο επίσης σοφιστής Βρύσων ο Ηρακλειώτης σύγχρονος του
Αντιφώντα.
Ουσιαστική
ώθηση στο πρόβλημα του τετραγωνισμού του κύκλου, δόθηκε από τον σοφιστή Ιππία
τον Ηλείο (β' μισό του 5ου αι. π.χ) και από τους Πάππο (3ος αι. μ.χ) και τον
Δεινόστρατο (4ος αι. π.χ) αδελφό του Μέναιχμου.
Ο
Ιάμβλιχος (250-325 μ.χ) αναφέρει ότι τον τετραγωνισμό του κύκλου κατόρθωσαν
O Αρχιμήδης (267-212
π.χ) με τη βοήθεια της "Έλικας".
Ο
Νικομήδης (περίπου 200 π.χ) με την καμπύλη που ονομαζόταν "ιδίως
τετραγωνίζουσα".
Ο
Απολλώνιος (265-170 π.χ) με την καμπύλη που ονόμαζε ο ίδιος "αδελφή της
κοχλοειδούς" που ήταν όμως ίδια με την καμπύλη του Νικομήδη.
Ο Κάρπος με κάποια καμπύλη την οποία ονομάζει
απλά "εκ διπλής κινήσεως προερχομένη".Και άλλοι πολλοί !!
ΠΗΓΗ:
http://www.mathsforyou.gr/
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου